Nils Wiberg* und Klaus Schurz

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 22. September 1987

Das blaßgelbe, feste, unter Normalbedingungen metastabile, extrem wasserempfindliche Silanimin $tBu_2Si = N - SitBu_3$ (3) entsteht durch Umsetzung von tBu₃SiNa mit tBu₂SiClN₃ in Dibutylether bei ca. -50°C. Es bildet Addukte 3 · D mit Donoren D (Koordination mit dem ungesättigten Siliciumatom in 3); die Lewis-Basizität der Donoren bezüglich 3 wächst in der Reihenfolge: NEt₃, OEt₂ (keine Koordination) $< Ph_2C=O < NMe_2Et <$ THF (Tetrahydrofuran). 3 bildet (ähnlich wie 3 · D) mit Wasser, Methanol, Benzol Insertionsprodukte in die OH- bzw. CH-Bindung, mit Propen, Isobuten, Aceton En-Reaktionsprodukte und mit Methylvinylether, Silylaziden Cycloaddukte (vgl. Schema 1, Produkte 7 bzw. 6, 8 bzw. 9, 11). Distickstoffoxid reagiert mit 3 bzw. 3 · THF [wohl auf dem Wege über ein Cycloaddukt (10, Schema 1) sowie das Silanon $tBu_2Si = O$ als Reaktionszwischenprodukte] zu einer cyclischen Verbindung (12) bzw. zu $tBu_2RSi - O - SitBu_2 - NH - SitBu_3$ (13) (R = Tetrahydro-1-furanyl). Ethyldimethylamin reagiert mit 3 · THF unter Öffnung des THF-Rings und Bildung von Me₂N-[CH₂]₄-O-SitBu₂- $NH - SitBu_3$ (14).

Wie wir kürzlich zeigen konnten³⁾, verwandelt sich das labile, selbst bei -100°C sehr rasch dimerisierende Silaethen $Me_2Si = C(SiMe_3)_2^{4}$ nach Ersatz zweier Methyl- durch sperrigere tert-Butylgruppen in ein bei Raumtemperatur metastabiles Silaethen $Me_2Si = C(SiMe_3)(SiMetBu_2)$. Dieses Ergebnis regte dazu an, das hinsichtlich Dimerisierung labile, vor einigen Jahren von uns als reaktive Zwischenstufe nachgewiesene Silanimin (Iminosilan, Silaketimin) 1⁵⁾ in analoger Weise durch Austausch von Methyl- gegen tert-Butylgruppen zu stabilisieren. Es zeigte sich, daß ein Ersatz dreier Methyl- durch tert-Butylgruppen nicht ausreicht; das Silanimin 2 ist unter Normalbedingungen instabil²). Erst der Austausch aller Methyl- gegen tert-Butylgruppen in 1 führt zu einem metastabilen Silanimin (3), dem ersten Beispiel einer bei Raumtemperatur isolierten⁶⁾ und röntgenstrukturanalytisch charakterisierten⁷) Siliciumverbindung mit einer Si = N-Doppelbindung.

Darstellung und Charakterisierung des Silanimins 3

Es lag nahe, das Silanimin 3 auf bewährtem Wege⁸⁾ durch "thermische Salzeliminierung" gemäß Gl. (1 a) aus Vorstufen 4 (X = Halogen; M = Alkalimetall) zu synthetisieren. Allerdings bereitete die Darstellung der benötigten Vorstufen

On the Stable Silanimine $tBu_2Si = N - SitBu_3$ and of Its Donor Adducts¹⁾

Pale yellow, solid silanimine $tBu_2Si = N - SitBu_3$ (3), metastable at normal conditions and extremely sensitive to water, is prepared by reaction of tBu₃SiNa and tBu₂SiClN₃ in dibutyl ether at about -50°C. It forms adducts 3 · D with donors D (coordination with the unsaturated silicon atom in 3), the basicity of which relative to 3 increases in the row NEt₃, OEt₂ (no coordination) < $Ph_2C = O < NMe_2Et < th f (tetrahydrofuran). 3 (similarly to 3 \cdot$ D) reacts with water, methanol, benzene under formation of insertion products into the OH or CH bond, with propene, isobutene, acetone under formation of ene reaction products, and with methyl vinyl ether, silyl azides under formation of cycloadducts (cf. Scheme 1, products 7 or 6, 8 or 9, 11). Dinitrogen oxide transforms 3 or $3 \cdot \text{thf}$ [obviously by way of a cycloaddukt (10, Scheme 1) and of silanone $tBu_2Si = O$ as reaction intermediates] under formation of a cyclic compound (12) or tBu₂RSi-O- $SitBu_2 - NH - SitBu_3$ (13) (R = tetrahydro-1-furanyl), respectively. Ethyldimethylamine reacts with $3 \cdot$ thf under opening of the thf ring and formation of $Me_2N - [CH_2]_4 - O - SitBu_2 - NH -$ SitBu₃ (14).

zunächst Schwierigkeiten: der sich anbietende "Normalweg" über die Verbindung $tBu_2SiX - NH - SitBu_3$, die durch Einwirkung von Metallorganylen in 4 umwandelbar sein sollte, ließ sich nicht verifizieren, da keine Synthesemöglichkeit für das betreffende, sterisch überladene Bis(silyl)amin aufgefunden wurde (tatsächlich läßt sich das Amin umgekehrt aus 3 durch HX-Addition erzeugen; s. weiter unten).

Die Idee für eine Methode zur Gewinnung von 4 ging letztendlich auf unsere Beobachtung zurück, daß sich Alkalimetallsilyle MSiR₃ an Silylazide R₃SiN₃ unter Bildung von Triazeniden R₃Si $-N=N-NM(SiR_3)$ addieren, wobei letztere ihrerseits thermisch unter Stickstoffeliminierung in Bis(silyl)amide R₃Si $-NM(SiR_3)$ zerfallen können⁹⁾. Läßt man demgemäß (Tri-*tert*-butylsilyl)natrium, NaSitBu₃, auf das Silylazid tBu₂SiClN₃ einwirken, so bildet sich - wohl auf dem Wege über das Triazenid 5 und das Amid 4 [Gl. (1); X = Cl, M = Na] - das Silanimin 3.

$$t \begin{array}{c} t B u_{2} Si - N - Sit B u_{3} & \xrightarrow{-MX} \\ X & M \\ 4 \\ (b) \begin{array}{c} \uparrow - N_{2} \\ \downarrow \\ X & M \end{array} & (1) \\ t B u_{2} Si - N = N - N - Sit B u_{3} & \xleftarrow{+MSit B u_{3}} \\ \chi & M \\ 5 \end{array}$$

Die Reaktion von NaSitBu₃ und tBu₂SiClN₃ setzt in Dibutylether um -50° C ein und führt direkt zu 3. Hiernach sind die postulierten, gemäß Gl. (1 c) und (1 b) gebildeten Reaktionszwischenstufen 5 und 4 (X = Cl; M = Na) bei -50° C bereits thermolabil. Allerdings könnte 5 auch unter NaCl-Eliminierung zunächst in tBu₂Si= N-N=N-SitBu₃ (statt durch N₂-Eliminierung in 4) übergehen; letztere Verbindung würde sich dann unter N₂-Eliminierung in 3 umwandeln. Somit ist die Aussage über die Thermolabilität von 4 (X = Cl; M = Na) noch unsicher.

Das Silanimin 3 bildet blaßgelbe, bei 85 °C unter Zersetzung schmelzende, in gängigen organischen Medien (Pentan, Diethylether, THF, Benzol) lösliche Nadeln. Die extrem wasserempfindliche Substanz ist bei Raumtemperatur kinetisch stabil und läßt sich im Hochvakuum bei ca. 70 °C sublimieren; sie zersetzt sich langsam ab ca. 80 °C in ein Produktgemisch, welches das En-Reaktionsprodukt von 3 mit Isobuten (s. weiter unten) als Hauptkomponente enthält. Offensichtlich besteht somit der erste Schritt der 3-Thermolyse in einer Eliminierung von Isobuten, welches sich seinerseits mit 3 umsetzt.

Nach einer von G. Müller und G. Reber durchgeführten Kristallstrukturanalyse⁷ enthält das Silanimin 3 ein lineares SiNSi-Gerüst mit einer kurzen und einer langen SiN-Bindung. Der kleinere SiN-Abstand entspricht mit 1.568 Å der für eine SiN-Doppelbindung theoretisch getroffenen Vorhersage⁷; der größere SiN-Abstand liegt mit 1.695 Å im Bereich der SiN-Einfachbindungsabstände $(1.64 - 1.78 \text{ Å})^7$. Das ungesättigte Siliciumatom der Si=N-Si-Gruppe ist planar von zwei *tert*-Butyl- und einer NSitBu₃-Gruppe, das gesättigte Siliciumatom verzerrt tetraedrisch von drei *tert*-Butyl- und einer *t*Bu₂SiN-Gruppe umgeben.

Das NMR-Signal des ungesättigten Siliciumatoms des Silanimins 3 ($\delta = 78$) liegt – wie bei sp²-Hybridisierung zu erwarten – bei relativ niedrigem Felde, während das entsprechende Signal des gesättigten Siliciumatoms der Verbindung ($\delta = -7.7$) bei erstaunlich hohem Felde erscheint (²⁹Si-NMR von tBu₃Si-NH-SitBu₃ zum Vergleich¹⁰): $\delta =$ 7.20). Letzterer Befund weist auf negative, am Stickstoff der Verbindung 3 lokalisierte Teilladungen. Offensichtlich kommt somit der polaren Grenzformel der Mesomerie

$$[tBu_2Si = N - SitBu_3 \leftrightarrow tBu_2Si^{\oplus} - \ddot{N}^{\ominus} - SitBu_3],$$

durch welche sich der Bindungszustand in 1 anschaulich beschreiben läßt, ein gewisses Gewicht zu (vgl. hierzu weiter unten). Das größere Gewicht hat allerdings die unpolare Grenzformel, wie aus dem gefundenen kurzen Si=N-Doppelbindungsabstand [1.568 Å; zum Vergleich: r(Si-N) in Me₃Si-NH-SiMe₃: 1.735 Å] sowie der hohen Lage der Si=N-Valenzschwingung folgt [1326 cm⁻¹; zum Vergleich: v_{as}(Si₂N) von tBu₃Si-NH-SitBu₃: 892 cm⁻¹].

Darstellung und Charakterisierung einiger Donoraddukte von 3

In analoger Weise wie das instabile Silanimin 2^{2} vermag auch das stabile Silanimin 3 Donoren D im Sinne von Gl. (2) unter Bildung von Addukten $3 \cdot D$ zu addieren. Allerdings bewirkt die Zunahme der sterischen Belastung mit *tert*-Butyl-Substituenten beim Übergang von 2 nach 3 eine Abnahme der Lewis-Acidität der Silanimine in gleicher Richtung. Als Folge hiervon bildet 3 – anders als 2 – keine Addukte mit schwach basischem Diethylether sowie basischerem, aber zugleich sperrigerem Triethylamin. Adduktbildung wird jedoch bei Einwirkung von Tetrahydrofuran (THF)¹¹, Ethyldimethylamin und – überraschenderweise – Benzophenon beobachtet.

$$3 + D \xrightarrow{(D, u. a.}{THF, NMe_2Et, Ph_2CO)} tBu_2Si=N-SitBu_3 \qquad (2)$$

Addukte des Typs $3 \cdot D$ lassen sich auch über Verdrängungsreaktionen (Ersatz des schwächeren an 3 koordinierten Donors durch einen stärkeren) gewinnen. So bildet sich $3 \cdot THF$ durch Einwirkung von THF auf $3 \cdot OCPh_2$ oder $3 \cdot NMe_2Et$, und es führt die Behandlung von $3 \cdot OCPh_2$ mit NMe₂Et zum Addukt $3 \cdot NMe_2Et$. Somit steigt die Lewis-Basizität der Donoren bezüglich 3 in folgender Donorreihenfolge an:

NEt₃, OEt₂ (keine Adduktbildung) $< Ph_2CO < NMe_2Et < THF$

Die hohe Sperrigkeit von 3 hat hierbei zur Folge, daß sich THF gegenüber 3 – anders als gegenüber 2^{2} und anderen ungesättigten Siliciumverbindungen¹²⁾ – basischer verhält als NMe₂Et.

An 3 koordiniertes Chlorid läßt sich nicht durch THF verdrängen. Demgemäß ist das Amid $tBu_2SiCl-NLi(SitBu_3)$ (4; X = Cl, M = Li), das sich bei Einwirkung von MeLi auf $tBu_2SiCl-NH(SitBu_3)$ bei -60 °C in THF bildet¹³), im Solvens THF unter Normalbedingungen stabil. Das Gleichgewicht Gl. (3) liegt vollständig auf der Seite des Amids $4 \cdot n$ THF. Das nach Abkondensieren von THF verbleibende farblose, feste Amid $4 \cdot$ THF setzt sich jedoch in Pentan als Lösungsmittel mit $3 \cdot$ THF und LiCl (gelöst und ungelöst) ins Gleichgewicht (ca. 75% $4 \cdot$ THF, 25% $3 \cdot$ THF). Durch Zugabe von Trifluormethansulfonsäure-trimethylsilylester zur Pentanlösung läßt sich das Gleichgewicht Gl. (3) vollständig auf die Seite des Addukts $3 \cdot$ THF verschieben, da Lithiumchlorid gemäß CF₃SO₃SiMe₃ + LiCl \rightarrow CF₃SO₃Li + Me₃SiCl aus dem Gleichgewicht herausgefangen wird (CF₃SO₃Li bildet als überaus schwache Base kein Addukt mit 3).

$$\begin{array}{c|c} t \operatorname{Bu}_{2}\operatorname{Si} & -\operatorname{Si} t \operatorname{Bu}_{3} & (\operatorname{Solvens}) \\ & \vdots & & \\ \operatorname{Cl} \cdots \operatorname{Li}(\operatorname{THF})_{n} & \stackrel{+}{\pm} (n-1) \operatorname{THF} & \mathbf{3} \cdot \operatorname{THF} + \operatorname{LiCl} & (\mathbf{3}) \\ & \mathbf{4} \cdot n \operatorname{THF} \end{array}$$

Die Addukte 3 · THF (farblose Kristalle; Schmp. 139 °C, Zers.), 3 · NMe₂Et (farblose Kristalle) und 3 · OCPh₂ (dunkelrote Kristalle) sind wie 3 in gängigen organischen Medien löslich, hydrolyseempfindlich und unter Normalbedingungen kinetisch stabil. 3 · THF sublimiert im guten Hochvakuum ($<10^{-5}$ mbar) bereits bei Raumtemperatur, also überraschenderweise leichter als das unter gleichen Bedingungen ab ca. 70 °C sublimierende THF-freie Silanimin 3. Im Massenspektrum von 3 · THF erscheint 3 ⁺ als Ion mit der höchsten Masse; auch erkennt man THF⁺ sowie dessen Bruchstückionen. Offensichtlich dissoziiert 3 · THF beim Sublimieren in die Adduktpartner. Im abgeschlossenen Gefäß zersetzt sich $3 \cdot \text{THF}$ in Toluol bei 230°C langsam in ein Produktgemisch, das bisher nicht näher untersucht wurde. Der – verglichen mit $3 \cdot \text{THF}$ – schwächere Komplex $3 \cdot \text{OCPh}_2$ dissoziiert bei gelindem Erwärmen einer benzolischen Lösung in die Adduktpartner 3 und Ph₂CO, erkenntlich am Verschwinden der dunkelroten Lösungsfarbe (eine bei Raumtemperatur gesättigte Lösung entfärbt sich bei 80°C fast vollständig).

Nach einer Kristallstrukturanalyse (G. Müller, G. Reber⁷) ist THF im Addukt $3 \cdot$ THF ähnlich wie in den Addukten $2 \cdot$ THF⁷) und Me₂Si = C(SiMe₃) (SiMetBu₂) × THF¹⁴) über eine vergleichsweise lange SiO-Bindung mit dem doppelt gebundenen Siliciumatom der ungesättigten Systeme verknüpft. Die Donoraddition an das Silanimin ist hierbei mit einer geringfügigen Verlängerung der Doppelbindung sowie einer leichten Pyramidalisierung des planaren ungesättigten Siliciumatoms^{2,7}) verbunden. Entsprechend $3 \cdot$ THF sind wohl auch $3 \cdot$ NMe₂Et und $3 \cdot$ OCPh₂ strukturiert.

Der Bindungszustand in $3 \cdot D$ läßt sich durch Mesomerie der no-bond-Struktur (4a) und der zwitterionischen Struktur (4b) veranschaulichen¹⁵:

$$\begin{bmatrix} D & D^{\bigoplus} \Theta \\ Si=N- & \searrow Si=N- \\ (a) & (b) \end{bmatrix}$$
 (4)

Die in Gl. (2) für $3 \cdot D$ genutzte Formel mit einem Pfeil zwischen Donor und Silicium ist als Kurzsymbol der Mesomerieformel (4) zu verstehen. Mit wachsender Stärke der koordinativen Bindung, d.h. in Richtung 3 (Donor entfällt) $< 3 \cdot \text{OCPh}_2 < 3 \cdot \text{NMe}_2\text{Et} < 3 \cdot \text{THF}$, sollte das Gewicht der Grenzformel (4b) wachsen und – als Folge hiervon – der SiN-Abstand sowie die negative Partialladung am Stickstoff größer werden.

Die mit der Adduktbildung verbundene Übertragung negativer Ladungsanteile vom Donor über das ungesättigte Si- und N-Atom bis auf das gesättigte Si-Atom der Si=N-Si-Gruppierung in 3 dokumentiert sich in einer Hochfeldverschiebung des ²⁹Si-NMR-Signals sowohl des ungesättigten Si-Atoms (stärker ausgeprägt) als auch des gesättigten Si-Atoms bzw. des ¹⁴N-NMR-Signals. Hierbei wird die Hochfeldverschiebung mit zunehmender Stärke der Koordinationsbindung, d.h. steigender Lewis-Basizität des Donors (s. oben) größer (vgl. Tab. 1).

Tab. 1. ²⁹Si- und ¹⁴N-NMR-Spektren von 3 und $3 \cdot D$ in C₆D₆

Verb.	²⁹ SitBu ₂ ^{a)}	²⁹ SitBu ₃ ^{a)}	¹⁴ N ^{b)}
3 3 · OCPh ₂ 3 · NMe ₂ Et 3 · THF	78.4 54.2 18.1 1.0	-7.7 -9.6 -13.6 -14.7	-230 c) -330

 $^{a)} \delta$ gegen externes TMS/C₆D₆. – $^{b)} \delta$ gegen externes NH₄NO₃/ H₂O. – $^{c)}$ Nicht bestimmt.

Chem. Ber. 121, 581-589 (1988)

Reaktivität von 3 und 3 · D

Trotz hoher sterischer Abschirmung der Doppelbindung in 3 ist die Reaktivität des Silanimins beachtlich. So reagiert die ungesättigte Verbindung heftig mit Wasser unter Bildung des Silanols 7a (Schema 1), welches sich seinerseits sehr leicht mit 3 zum sterisch überladenen, in gebräuchlichen organischen Medien schlecht löslichen Disiloxan 7b umsetzt. Demgemäß beobachtet man beim Umfüllen von Iminosilanlösungen, Zugabe von Reaktanden zu gelöstem 3 u.ä. die Bildung von mehr oder weniger farblosem Niederschlag (7b) aufgrund einer Reaktion von 3 mit Wasserspuren an den Gefäßwänden oder im Reaktandensolvens.

Schema 1. Reaktionen von 3 (die tBu- und SitBu₃-Gruppen an Si und N wurden der Übersichtlichkeit halber weggelassen; analog 3 reagieren die Addukte 3 · D)

Ähnlich wie in die OH-Bindungen des Wassers schiebt sich 3 auch in die XH-Bindungen anderer protonenaktiver Stoffe unter Bildung von *Insertionsprodukten* ein, z. B. in die OH-Bindung von Methanol (\rightarrow 7c, Schema 1) oder ClH-Bindung von Chlorwasserstoff (\rightarrow 7d)¹⁶⁾. Selbst Benzol insertiert 3 in eine seiner CH-Bindungen (\rightarrow 7e); allerdings verläuft die Einschiebungsreaktion erst bei erhöhter Temperatur (80°C) und auch dann nur als Nebenreaktion der Thermolyse von 3. Es verwundert deshalb nicht, daß entsprechende Benzol-Insertionsprodukte bisher nicht beobachtet wurden, da ungesättigte Siliciumverbindungen in der Regel instabiler als 3 sind.

Das Silanimin 3 bildet des weiteren sehr leicht *En-Reak*tionsprodukte. Beispielsweise vereinigt sich Isobuten bereits bei tiefen Temperaturen mit 3 unter Bildung der Verbindung **6b** (Schema 1), welche ihrerseits als Enophil wirkt und – sogar rascher als Isobuten — mit 3 zum En-Reaktionsprodukt 6c abreagiert. Ähnlich bereitwillig setzt sich 3 mit Propen oder Aceton zu 6a bzw. 8 (Schema 1) um.

Auch 2,3-Dimethyl-1,3-butadien verhält sich gegenüber 3 als Enophil und nicht als Dien (keine Bildung eines [2 + 4]-Cycloaddukts). Dementsprechend setzt sich 1,3-Butadien unter Normalbedingungen nicht mit 3 um. Erst bei erhöhter Temperatur (100°C) beobachtet man in letzterem Fall langsame Reaktion unter Bildung von Produkten, deren Konstitution noch nicht geklärt wurde.

Während 3 keine besondere Tendenz für [2 + 4]-Cycloadditionen zeigt, bildet das Silanimin mit nicht zu sperrigen Reaktanden [2 + 2]- sowie [2 + 3]-Cycloaddukte. So vereinigt sich 3 mit Methylvinylether unter [2 + 2]-Cycloaddition glatt zur Verbindung 9 (Schema 1), mit den Silylaziden tBuMe₂SiN₃ und tBu₂ClSiN₃ unter [2 + 3]-Cycloaddition zu den Produkten 11a und 11b (Schema 1), während etwa die Reaktanden Benzophenon oder Tri-tert-butylsilylazid, die mit dem weniger sperrigen Silanimin 2 Cycloaddukte bilden²), sich gegenüber 3 wegen sterischer Reaktionsbehinderung cycloadditionsträge verhalten¹⁷ (in ersterem Fall bildet sich allerdings das Addukt 3 · OCPh₂; bezüglich der Reaktion von 3 mit Benzaldehyd vgl. Lit.¹⁸).

In analoger Weise wie mit Silylaziden bildet **3** mit Distickstoffoxid offensichtlich ein [2 + 3]-Cycloaddukt **10** (Schema 1), welches allerdings instabil ist und unter Bildung von Folgeprodukten zerfällt¹⁸⁾. Tatsächlich isoliert man als Hauptprodukte der Umsetzung von N₂O mit **3** in Benzol das Silylazid tBu₃SiN₃ sowie eine Verbindung **12**, deren Molekülmasse (514) sich als Summe der Massen des Silanons (158) und des Silanimins **3** (356) ergibt [Gl. (5)].

Möglicherweise zersetzt sich hiernach das als Reaktionszwischenprodukt der Reaktion von N₂O mit 3 postulierte [2 + 3]-Cycloaddukt 10 unter [2 + 3]-Cycloreversion in tBu_3SiN_3 und $tBu_2Si=O$ (vgl. Schema 1, punktierte Linie der Formel 10), wobei sich gebildetes Silanon rasch durch Reaktion mit noch unverbrauchtem Edukt 3 stabilisiert. Letztere Umsetzung führt, da eine [2 + 2]-Cycloaddition von $tBu_2Si=O$ und 3 wohl sterisch behindert ist, in komplexer Reaktion unter Wanderung des Wasserstoffs einer *tert*-Butylgruppe zur Verbindung 12. Für diesen Bildungsweg spricht, daß sich intermediär aus 3 und N₂O erzeugtes Silanon $tBu_2Si=O$ über Abfangprodukte "sichtbar" machen läßt¹⁸, und daß das weniger sperrige Silanimin 2 mit N₂O auf dem Wege über tBu_3SiN_3 und Me₂Si=O in der Tat zum [2 + 2]-Cycloaddukt des Silanons und Silanimins 2 abreagiert¹⁸).

Die Donoraddukte $3 \cdot D$ liefern bei Einwirkung von Reaktanden in der Regel die gleichen Reaktionsprodukte wie das Silanimin selbst, abgesehen vom Donor, der zusätzlich freigesetzt wird (vgl. Versuchsteil). In einigen Fällen beobachtet man jedoch ein abweichendes Verhalten der Addukte. So setzt sich etwa $3 \cdot \text{THF}$ in Benzol mit N₂O anders als 3 [Gl. (5)] unter Bildung von tBu_3SiN_3 sowie der Verbindung 13 um [Gl. (6)]; auch bildet sich bei Einwirkung von NMe₂Et auf $3 \cdot$ THF nicht wie im Fall der Umsetzung von 3 und NMe₂Et das Addukt $3 \cdot$ NMe₂Et, sondern die Verbindung 14 [Gl. (7)]. In beiden Fällen wirkt somit der an 3 gebundene Donor THF an der Produktbildung mit.

2
$$3 \cdot \text{THF} \xrightarrow{+ N_2 O} t \text{Bu}_2 \text{Si} - O - \text{Si} t \text{Bu}_2 - \text{NH} - \text{Si} t \text{Bu}_3 (6)$$

 $- t \text{Bu}_3 \text{Si} \text{N}_3, - t \text{Bu}_2 \text{Si} - O - \text{Si} t \text{Bu}_2 - \text{NH} - \text{Si} t \text{Bu}_3 (6)$
 $3 \cdot \text{THF} \xrightarrow{+ \text{NMe}_2 \text{Et}}_{- \text{CH}_2 = \text{CH}_2} \text{Me}_2 \text{N} - [\text{CH}_2]_4 - O - \text{Si} t \text{Bu}_2 - \text{NH} - \text{Si} t \text{Bu}_3 (7)$
 14

Im Fall der Reaktion mit N₂O ist aus den oben dargelegten Gründen die intermediäre Bildung des Silanons $tBu_2Si = O$ wahrscheinlich, welches unter den Reaktionsbedingungen (Anwesenheit von THF) naturgemäß als Addukt THF $\rightarrow tBu_2Si = O$ anfällt. Letzteres setzt sich dann mit 3 (aus 3 · THF) zum Reaktionsendprodukt 13 um (bezüglich Einzelheiten vgl. Lit.¹⁸).

Im Fall der Reaktion mit NMe₂Et öffnet offensichtlich das Amin durch nucleophilen Angriff am α -C-Atom des koordinativ gebundenen Tetrahydrofurans den THF-Ring¹⁹; das entstehende Betain EtMe₂N^{\oplus} - [CH₂]₄-O-SitBu₂-N^{\ominus} - SitBu₃ stabilisiert sich anschließend durch Protonenübertragung von der Ethyl- zur Amidgruppe bei gleichzeitiger Eliminierung von Ethylen (vgl. hierzu Lit.²).

Abschließende Bemerkungen

Ungesättigte Siliciumverbindungen des Typs Si = Y ("Silene") stellen eine vergleichsweise junge Verbindungsklasse der Chemie dar. Sie sind in der Regel thermolabil und dimerisieren sich nach ihrer Erzeugung rasch unter Bildung von [2 + 2]-Cycloaddukten²⁰. In Anwesenheit von Reaktanden setzen sie sich mit diesen aber häufig rascher als mit sich selbst zu Abfangprodukten um, welche einerseits die intermediäre Existenz der Silene sichtbar machen²⁰, andererseits für die präparative Chemie von wesentlichem Interesse sind. Schon in naher Zukunft könnten die hoch reaktiven Silene in der Technik die Rolle wichtiger Zwischenprodukte bei Synthesen von siliciumhalten Polymeren und Wirkstoffen spielen.

Die Existenz instabiler ungesättigter Siliciumverbindungen erfährt durch die Isolierung metastabiler Verbindungsbeispiele eine wichtige Absicherung. Zudem werden mit der Isolierung kinetisch stabiler Silene wesentliche Einblicke in deren Struktur, Bindungszustand und chemische Reaktivität möglich. Nun lassen sich ungesättigte Siliciumverbindungen nach bisherigen Erkenntnissen⁸⁾ insbesondere durch sterische Doppelbindungsabschirmung stabilisieren, was naturgemäß zugleich eine Abnahme der chemischen Reaktivität oder sogar eine Änderung des chemichen Verhaltens der Verbindungen zur Folge hat (vgl. hierzu etwa das Ausbleiben von Cycloadditionen des Silanimins 3 mit Benzophenon, Tri-tert-butylsilylazid oder mit sich selbst bzw. die Änderung in der Reihenfolge der Lewis-Basizitäten von Donoren hinsichtlich 3, weiter oben). Andererseits kann natürlich, wie das Beispiel der Insertion von 3 in eine CH-Bindung von Benzol lehrt, eine hohe kinetische Stabilisierung ungesättigter Siliciumverbindungen auch zu einem erfreulichen "Erwachen" schlummernder chemischer Reaktionsmöglichkeiten der Silene führen.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung der Untersuchungen mit Personal- und Sachmitteln.

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Nach Literaturvorschriften wurden dargestellt: tBu_2SiHCl^{21} , tBu_3SiBr^{21} , $tBu_3SiNa(THF)_2^{21}$ (bez. $tBu_3SiNa(OBu_2)$ s. nachfolgend), $tBuMe_2SiN_3^{221}$ (bez. tBu_2SiClN_3 s. nachfolgend), $tBu_2SiCl-NH(SitBu_3)$ (s. unten, Reaktion von 3 mit HCl), $tBu_2SiCl-NLi(SitBu_3)$ (s. nachfolgend).

NMR-Spektren: Jeol FX 90Q, δ -Werte gegen internes TMS (¹H, ¹³C), externes TMS (²⁹Si), externes [D₁₂]TMS (²H), externes NH₄NO₃/D₂O (¹⁴N). – IR-Spektren: Perkin-Elmer 325. – Massenspektren: Varian CH 7; alle Massen neuer Verbindungen wurden massenspektrometrisch überprüft. – Die Produktrennungen erfolgten in einigen Fällen durch HPLC mit einem Gerät 830 der Firma Du Pont (Detektion durch UV bei 220 nm sowie durch Refraktometrie).

(*Tri-tert-butylsilyl*)natrium-Dibutylether(1/1), tBu₃SiNa(OBu₂): Eine Lösung von 16.1 g (57.5 mmol) tBu₃SiBr in 225 ml Dibutylether, welche 12.2 g (530 mmol) Natriumdraht enthält, wird 14 h auf 80°C erhitzt. Hierbei muß kräftig gerührt werden, damit gebildetes NaBr vom Natriumdraht abgeschüttelt wird. Laut ¹H-NMR quantitative Bildung von tBu₃SiNa. Nach Abkondensieren aller i. Hochvak. flüchtigen Anteile, Aufnahme des Rückstandes in Pentan, Abfiltrieren von Unlöslichem (NaBr, Na) und Abziehen des Pentans verbleibt tBu₃SiNa · OBu₂ als gelber Feststoff. – ¹H-NMR (C₆D₆): $\delta = 1.44$ (s, SitBu₃), 0.830 (m, 2CH₃), verdeckt (m, 2CH₂CH₂), 3.07 (m, 2OCH₂). – (OBu₂): $\delta = 1.03$ (s, SitBu₃), gebundener und freier Dibutylether nicht unterscheidbar. – Durch Zugabe von Methanol läßt sich das Produkt in tBu₃SiH (Nachweis durch Vergleich mit authentischer Probe²¹) überführen. Die Mengenbestimmung von tBu₃SiNa in OBu₂ erfolgt durch Titration.

Azidodi-tert-butylchlorsilan, tBu_2SiClN_3 (gemeinsam mit P. Karampates): Eine Suspenion von 19.5 g (300 mmol) NaN₃ in 100 ml THF, das 17.5 g (109 mmol) tBu_2SiHCl gelöst enthält, wird 16 h unter Rückfluß gehalten. Die fraktionierende Destillation des von Unlöslichem befreiten Reaktionsgemisches liefert bei 90°C/40 mbar 15.0 g (81 mmol, 74%) farbloses, flüssiges Azidodi-tert-butylsilan, tBu_2SiHN_3 [¹H-NMR (CCl₄): $\delta = 1.07$ (s, SitBu₂), 4.10 (s, SiH). – IR (Film): 2142 cm⁻¹ (v_{as}N₃), 2120 (vSiH)].

Man tropft zu 6.65 g (35.9 mmol) tBu_2SiHN_3 in 40 ml CCl₄ bei -15°C eine Lösung von 40 mmol Cl₂ in 20 ml CCl₄. Die fraktionierende Destillation der Reaktionslösung liefert bei 34°C i. Ölpumpenvak. 6.42 g (29.2 mmol, 82%) farbloses, flüssiges tBu_2SiClN_3 . – ¹H-NMR (CCl₄): $\delta = 1.13$ (s, SitBu₂). – (C₆H₆): $\delta = 0.982$ (s, SitBu₂). – IR (Film): 2142 cm⁻¹ (v_{as}N₃).

 $\begin{array}{cccc} C_8H_{18}ClN_3Si \ (219.8) & Ber. \ C \ 43.72 & H \ 8.25 & N \ 19.12 \\ & Gef. \ C \ 42.87 & H \ 7.23 & N \ 18.78 \end{array}$

Lithium(di-tert-butylchlorsilyl)(tri-tert-butylsilyl)amid-Tetrahydrofuran(1/1) (4 THF): Zu einer auf -60° C gekühlten Lösung von 0.756 g (1.93 mmol) tBu₂SiCl-NH(SitBu₃) (7d) in 6 ml THF werden 1.93 mmol MeLi in 3 ml Et₂O getropft. Laut ¹H-NMR vollständiger Umsatz zu tBu₂SiCl-NLi(SitBu₃) (4) nach 60stdg. Reaktion bei -60° C. Nach Zusatz von Wasser oder Methanol quantitative Rückbildung von 7d (eine Weiterhydrolyse oder -methanolyse zu tBu₂Si(OH)-NH(SitBu₃) bzw. tBu₂Si(OMe)-NH-(SitBu₃) erfolgt selbst bei 60°C wegen sterischer Abschirmung des Substitutionszentrums nicht). Nach Abkondensieren aller i. Ölpumpenvak. flüchtigen Anteile der auf Raumtemp. erwärmten THF-Lösung von 4 verbleibt farbloses, festes 4 · THF. – ¹H-NMR (Pentan): $\delta = 1.15$ (s, SitBu₃), 1.20 (s, SitBu₂), 1.84/3.80 (m/m, 1 THF). – (THF): $\delta = 1.06$ (s, SitBu₃, SitBu₂), gebundenes und freies THF nicht unterscheidbar. – (C₆D₆): $\delta = 1.32$ (s, SitBu₃), 1.44 (s, SitBu₂), 1.17/3.35 (m/m, 1 THF).

Anmerkungen: 1) Die Lösung von 4 · THF in Pentan (entsprechendes gilt wohl für Benzol) enthält mit 4 · THF im Gleichgewicht stehendes 3 · THF (fast übereinstimmende ¹H-NMR-Signallagen bei $\delta = 1.13$ und 1.21; vgl. hierzu Darstellung von 3 · THF, Punkt c). - 2) Führt man die Metallierung von 7d in THF mit MeLi nicht bei -60°C, sondern bei -40°C durch, so entsteht neben ca. 60% 4 noch 20% tBu₂SiMe-NLi(SitBu₃) [Protolyse zu tBu₂SiMe-NH(SitBu₃)]; ¹H-NMR (THF): $\delta = 0.22$ (s, SiMe), 1.05 (s, SitBu₂), 1.16 (s, SitBu₃)]; 20% Edukt verbleiben unumgesetzt. - 3) 7d setzt sich in Hexan selbst bei Raumtemp. nicht mit nBuLi bzw. tBuLi um.

N-(Tri-tert-butylsilyl)di-tert-butylsilanimin (3): Zu einer auf -78°C gekühlten Lösung von 30.9 mmol tBu₃SiNa in 150 ml Dibutylether werden 6.79 g (30.9 mmol) tBu₂SiClN₃ in 5 ml Dibutylether getropft. Man erwärmt langsam auf Raumtemp. wobei sich ab - 50 °C N₂ entwickelt [insgesamt 30.6 mmol (99%) laut Bestimmung mit Hilfe einer Töplerpumpe] und ein Feststoff (NaCl) ausfällt. Nach Abkondensieren aller i. Hochvak. bei Raumtemp. flüchtigen Anteile, Aufnehmen des Rückstandes in Pentan und Abfiltrieren unlöslicher Anteile kristallisieren aus der Pentanlösung bei langsamem Abkühlen auf -78 °C 6.60 g (18.6 mmol; 60%) 3 in langen blaßgelben Nadeln (Schmp. 85°C, Zers.) aus. – ¹H-NMR (Cyclohexan): $\delta = 1.12$ (s, SitBu₃), 1.32 (s, SitBu₂). - (Et₂O): $\delta =$ 1.12 (s, SitBu₃), 1.22 (s, SitBu₂). - (C₆D₆): $\delta = 1.11$ (s, SitBu₂), 1.34 (s, SitBu₃). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 23.5$ (5 CMe₃), 29.5 (2CMe₁), 31.4 (3CMe₁). - ²⁹Si- und ¹⁴N-NMR: Tab. 1. - IR (Tieftemperaturkondensat): 1326 cm⁻¹ (vSi = N). – MS (70 eV): m/z $(\%) = 298 (M^+ - tBu, 100), 256/214/172/130 (M^+ - tBu - 1/100))$ 2/3/4 Propen, 3/14/18/54), 100 (42), 73 (SiMe₃⁺, 14), 57 (tBu, 32). -Kristallstruktur von 3: vgl. Lit.⁷⁾.

N-(Tri-tert-butylsilyl)di-tert-butylsilanimin-Tetrahydrofuran(1/1) (3 · THF)

a) Zu einer auf -40 °C gekühlten Lösung von 7.16 g (32.6 mmol) tBu₂SiClN₃ in 40 ml Pentan werden 32.6 mmol tBu₃SiNa · 2 THF in 90 ml Pentan getropft. Nach Erwärmen der Reaktionslösung auf Raumtemp. (N₂-Entwicklung, Niederschlagsbildung), Abfiltrieren unlöslicher Anteile (NaCl) und Einengen kristallisieren aus der Pentanlösung bei -78 °C 10.9 g (25.4 mmol, 78%) farbloses **3** · THF; Schmp. 139 °C (Zers.). - ¹H-NMR (Pentan): $\delta = 1.13$ (s, SitBu₃), 1.21 (s, SitBu₂), 2.00/4.50 (m/m, 1 THF). - (THF): $\delta = 1.11$ (s, SitBu₃), 1.18 (s, SitBu₂), gebundenes und freies THF nicht unterscheidbar. - (C₆D₆): $\delta = 1.17$ (s, SitBu₂), 1.46 (s, SitBu₃), 1.11/3.93 (m/m, 1 THF). - ¹³C{¹H}-NMR (C₆D₆): $\delta = 24.9$ (3 CMe₃), 25.6 (2 CMe₃), 30.5 (2 CMe₃), 32.3 (3 CMe₃), 24.3/73.5 (THF). - ²⁹Si- und ¹⁴N-NMR: Tab. 1. - MS (70 eV): Überlagerung des Massenspektrums von **3** (s. oben) und THF (M⁺ = 72). - Kristallstruktur: vgl. Lit.⁷.

b) Man gibt zu einer Lösung von 0.037 g (0.103 mmol) 3 in 0.5 ml Benzol 0.1 ml (1.23 mmol) THF und zieht vom Reaktionsgemisch alle i. Ölpumpenvak. flüchtigen Anteile ab. Es verbleibt $3 \cdot$ THF. Nachweis durch Vergleich mit authentischer Probe (s. oben). – In analoger Weise bildet sich nach Zugabe von THF zu einer Lösung von $3 \cdot$ OCPh₂ bzw. $3 \cdot$ NMe₂Et das Addukt $3 \cdot$ THF.

c) Man versetzt eine Lösung von 0.226 g (0.480 mmol) 4 · THF in 3 ml Pentan (A) bzw. 3 ml Benzol (B) mit 0.087 ml (0.480 mmol) $CF_3SO_3SiMe_3$. Laut ¹H-NMR quantitative Bildung von 3 · THF; das nach Abtrennung unlöslicher Anteile bei -78 °C aus dem Reaktionsmedium (im Fall A nach Ersatz von Benzol durch Pentan) auskristallisiert. Nachweis durch Vergleich mit authentischer Probe, s. oben.

Anmerkung: $4 \cdot \text{THF}$ in Pentan (analoges gilt wohl für Benzol) verwandelt sich teilweise in $3 \cdot \text{THF}$ und LiCl (fällt aus). Wegen übereinstimmender Signallagen läßt sich das Molverhältnis $4 \cdot \text{THF}$ zu $3 \cdot \text{THF}$ nicht ¹H-NMR-spektroskopisch bestimmen. Letzteres folgt aber nach Zugabe von überschüssigem Wasser zur Pentanlösung, wodurch $3 \cdot \text{THF}$ in $t\text{Bu}_2\text{Si}(\text{OH}) - \text{NHSitBu}_3$ (7a) und $4 \cdot \text{THF}$ in $t\text{Bu}_2\text{SiCl} - \text{NHSitBu}_3$ (7d, keine Weiterhydrolyse zu 7a möglich) übergeführt wird, und zwar bilden sich 25% 7a, 75% 7d. Löst man dementsprechend $n \mod 4 \cdot \text{THF}$ und $n \mod 0$ CF₃SO₃SiMe₃ in Pentan, so werden nur 75% des eingesetzten Esters gemäß $4 \cdot \text{THF} + \text{CF}_3\text{SO}_3\text{SiMe}_3 \rightarrow 3 \cdot \text{THF} + \text{Me}_3\text{SiCl} + CF_3\text{SO}_3\text{Li verbraucht.}$

N-(*Tri-tert-butylsilyl*)*di-tert-butylsilanimin-Ethyldimethylamin*-(*1*/*1*) (**3** · NMe₂Et): Man gibt zu einer Lösung von 0.145 g (0.408 mmol) **3** in 1 ml Benzol 0.3 ml (2.78 mmol) NMe₂Et und zieht vom Reaktionsgemisch alle i. Ölpumpenvak. flüchtigen Anteile ab. Es verbleibt **3** · NMe₂Et als farbloser Feststoff. – ¹H-NMR (C₆D₆): δ = 1.19 (s, SitBu₂), 1.38 (s, SitBu₃), 0.573/2.80 (t/q, NEt), 2.15 (s, NMe₂). – (C₆D₆/NMe₂Et): δ = 1.21 (s, SitBu₂), 1.37 (s, SitBu₃), gebundenes und freies NMe₂Et nicht unterscheidbar (¹H-NMR-Signallagen hängen von der **3** · NMe₂Et-Konzentration ab). – ¹³C{¹H}-NMR (C₆D₆): δ = 24.9 (3CMe₃), 27.8 (2CMe₃), 31.4 (2CMe₃), 32.3 (3CMe₃), 7.56/44.2/52.3 (CH₂CH₃/NCH₃/CH₂CH₃). – ²⁹Si-NMR: Tab. 1. – Weitere Verbindungscharakterisierung durch Reaktion mit Methanol, s. dort.

Anmerkung: $3 \cdot NMe_3Et$ bildet sich auch nach Zugabe von NMe₂Et zu einer Lösung von $3 \cdot OCPh_2$ in Benzol (Entfärbung), jedoch nicht nach NMe₂Et-Zugabe zu einer Lösung von $3 \cdot THF$ (s. weiter unten). Das nach $3 \cdot OCPh_2 + NMe_2Et \rightleftharpoons 3 \cdot NMe_2Et +$ Ph₂CO entstehende Aminaddukt verwandelt sich nach Abkondensieren aller flüchtigen Anteile (C₆H₆, NMe₂Et) wieder in das Benzophenonaddukt (Gleichgewichtsverschiebung durch Entzug von NMe₂Et).

N-(*Tri-tert-butylsilyl*)*di-tert-butylsilanimin-Benzophenon*(1/1) (3 · OCPh₂): Man gibt zu einer Lösung von 0.268 g (1.47 mmol) Ph₂CO in 5 ml Diethylether 0.522 g (1.47 mmol) 3 in 3 ml Diethylether. Die Lösung wird augenblicklich intensiv rot. Nach Abkondensieren aller i. Ölpumpenvak. flüchtigen Anteile und Lösen des Rückstandes in 15 ml Pentan kristallisieren aus dem Solvens bei −78 °C 0.720 g (1.34 mmol, 91%) dunkelrotes 3 · OCPh₂. – ¹H-NMR (C₆D₆): δ = 1.14 (s, SitBu₂), 1.36 (s, SitBu₃), 7.08/7.69 (m/m, Ph₂CO). – ¹³C{¹H}-NMR (C₆D₆): δ = 23.5 (5CMe₃), 29.6 (2CMe₃), 31.5 (3CMe₃), 128.3/130.2/132.1/138.3 (m//p/i-C von Ph₂CO), 196.0 (Ph₂CO). – ²⁹Si-NMR: Tab. 1. – Weitere Verbindungscharakterisierung durch Reaktion mit Methanol und Aceton, s. dort.

Anmerkung: $3 \cdot \text{OCPh}_2$ bildet sich auch nach Zugabe von Ph₂CO zu einer Lösung von 3 in Triethylamin. Die Bildung des schwachen Komplexes $3 \cdot \text{OCPh}_2$ in Et₂O bzw. NEt₃ (großes Molverhältnis Solvens: Ph₂CO) beweist, daß die Lewis-Basizität der Donoren Et₂O bzw. NEt₃ hinsichtlich 3 wesentlich kleiner (verschwindend) ist als die Basizität von Ph₂CO. Demgemäß lassen sich Lösungen von 3 in Et₂O oder NEt₃ – anders als solche von 3 in NMe₂Et – i. Hochvak. vollständig vom Solvens befreien; es verbleibt donorfreies 3.

Thermolysen von 3 und $3 \cdot D$

a) Thermolyse von 3 ohne Lösungsmittel: Wochenlanges Erhitzen von 3 auf 80°C bzw. 12stdg. Erwärmen von 3 auf 160°C führt zur

vollständigen Thermolyse von 3. Laut ¹H-NMR des in C_6D_6 gelösten Thermolysats bildet sich ein Produktgemisch, welches das En-Reaktionsprodukt 6c von Isobuten an 3 als überwiegendes Hauptprodukt enthält (Nachweis durch Vergleich mit authentischer Probe, s. unten).

b) Thermolyse von 3 in Benzol: 0.044 g (0.123 mmol) 3 werden in 1 ml C₆D₆ im abgeschlossenen und evakuierten Rohr 21 d auf 180°C erwärmt. Laut ¹H-NMR bilden sich die Produkte der Thermolyse ohne Lösungsmittel (s. oben) sowie zusätzlich das Insertionsprodukt 7e von 3 in eine CD-Bildung von C_6D_6 . Nach Abkondensieren aller i. Ölpumpenvak. flüchtigen Anteile und Behandeln des Rückstandes mit Pentan/Methanol (gleiche Volumina) verbleibt die Hauptmenge des En-Reaktionsproduktes 6c ungelöst zurück (Nachweis durch Vergleich mit authentischer Probe). Man kondensiert von der Lösung alle i. Ölpumpenvak. flüchtigen Anteile ab und trennt den verbleibenden Rückstand nach Aufnahme in 1 ml MeOH durch präparative HPLC (Säule ODS 21.2 × 250 mm; mobile Phase MeOH/tBuOMe = 65:35; Fluß 20 ml/min, entsprechend 56 bar; Kapazitätsfaktor \varkappa' für 7e = 0.84). Deuterio/di-tert $butyl(pentadeuteriophenyl)silyl](tri-tert-butylsilyl)amin ([D_6]-7e):$ Farbloser Feststoff, Schmp. 131 °C. $- {}^{1}$ H-NMR (CDCl₃): $\delta = 1.12$ (s, SitBu₃), 1.14 (s, SitBu₂). - (C₆D₆): $\delta = 1.21$ (s, SitBu₃), 1.24 (s, SitBu₂). $- {}^{2}$ H-NMR (CHCl₃): $\delta = -0.013$ (s, ND), 7.30/8.01 (br. C_6D_5). $- {}^{13}C{}^{1}H$ -NMR (C_6D_6): $\delta = 22.5$ (2*C*Me₃), 24.0 (3*C*Me₃), 30.7 (2CMe₃), 31.1 (3CMe₃); die chemischen Verschiebungen der aromatischen C-Atome konnten wegen der Deuterium-bedingten, sehr langen Relaxationszeiten nicht ermittelt werden. - IR (Film): 2270 cm⁻¹ (vCD), 2410 (vND).

c) Thermolyse von 3 in Diethylether: Laut ¹H-NMR bilden sich beim längeren Erwärmen von 3 in Et₂O bei 180°C ausschließlich die Produkte der 3-Thermolyse ohne Solvens, s. oben $[tBu_2Si-(OEt)-NH-SitBu_3$ und CH₂=CH₂ entstehen nicht, in Übereinstimmung mit dem Befund, daß Et₂O mit 3 kein Addukt bildet; vgl. hierzu Lit.²⁰].

d) Thermolyse von $3 \cdot OCPh_2$: Mit zunehmender Erwärmung von 0.044 g (0.081 mmol) $3 \cdot OCPh_2$ in 0.5 ml C₆D₆ hellt sich die dunkelrote Lösung zusehends auf, Entfärbung bei 80°C. Beim Abkühlen der Lösung tritt die dunkelrote Farbe wieder auf. – Mehrtägiges Erhitzen von $3 \cdot OCPh_2$ bei 80°C führt zu den Produkten der 3-Thermolyse in Benzol, s. oben (für die Bildung eines [2 + 2]-Cycloaddukts von 3 und Ph₂CO finden sich keine Anzeichen).

e) Thermolyse von **3** • THF in Toluol: Laut ¹H-NMR zerfällt **3** • THF in Toluol bei 230 °C vollständig in ein Gemisch vieler Produkte, deren Konstitution bisher nicht aufgeklärt wurde (vgl. hierzu Lit.¹⁸).

Reaktion von 3 mit H_2O , MeOH, 7a und HCl (bezüglich der Reaktion von 3 mit Benzol s. oben): Zu 0.11 g (0.30 mmoL) 3 in 3 ml Benzol gibt man 0.5 ml (28 mmol) H_2O in 2 ml THF (A), 2.7 μ l (0.15 mmol) H_2O (B), 0.11 g (0.30 mmol) 7a (C), 12 μ l (0.30 mmol) MeOH₂(D) bzw. HCl in Form von 0.034 g (0.35 mmol) Me₃NHCl (E). Laut ¹H-NMR quantitative Bildung der Verbindungen 7a (A), 7b (B, C), 7c (D) bzw. 7d (E), welche nach Abkondensieren aller flüchtigen Anteile i. Ölpumpenvak. (im Fall des Ansatzes E wird das Reaktionsgemisch zunächst filtriert) als farblose Feststoffe verbleiben.

Anmerkungen: 1) Die Umsetzungen von $3 \cdot$ THF mit H₂O, Me₃NHCl (Durchführung analog den entsprechenden Umsetzungen mit 3) führen quantitativ zu 7a - d neben 1 mol THF pro mol eingesetztem $3 \cdot$ THF. – 2) Die Umsetzungen von $3 \cdot$ NMe₂Et und $3 \cdot$ OCPh₂ mit MeOH führen quantitativ zu 7c neben NMe₂Et bzw. Ph₂CO.

586

(*Di-tert-butylhydroxysilyl*)(*tri-tert-butylsilyl*)*amin* (7a): Farbloser Feststoff, Schmp. 130 °C. – ¹H-NMR (CCl₄): $\delta = 1.06$ (s, SitBu₂), 1.16 (s, SitBu₃), 2.00 (s, OH). – (THF): $\delta = 1.08$ (s, SitBu₂), 1.19 (s, SitBu₃), verdeckt (OH). – (C₆D₆): $\delta = 1.10$ (s, SitBu₂), 1.22 (s, SitBu₃), 1.44 (s, OH). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 22.0$ (2 CMe₃), 23.6 (3 CMe₃), 29.0 (2 CMe₃), 31.2 (3 CMe₃). – IR (Film): 3660 cm⁻¹ (vOH), 3295 (vNH).

$\begin{array}{c} C_{20}H_{47}NOSi_2 \ (373.8) & \mbox{Ber. C} \ 64.27 \ H \ 12.68 \ N \ 3.75 \\ Gef. \ C \ 65.75 \ H \ 13.52 \ N \ 3.50 \end{array}$

2,2,4,4-Tetra-tert-butyl-1,5-bis(tri-tert-butylsilyl)-3-oxa-1,5diaza-2,4-disilapentan (7b): Farbloses Pulver, Schmp. 344 °C (Zers.), wenig löslich in üblichen organischen Medien bei Raumtemp. (z. B. 0.003 mol pro l Toluol bei Raumtemp.), besser bei etwas erhöhter Temperatur. – ¹H-NMR (THF): $\delta = 1.23$ (s, 2SitBu₃), 1.29 (s, 2SitBu₂). – (C₆D₆): $\delta = 1.28$ (s, 2SitBu₃), 1.38 (s, 2SitBu₂). – (C₆D₅CD₃): $\delta = 1.26$ (s, 2SitBu₃), 1.36 (s, 2SitBu₂). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 23.6$ (4CMe₃), 24.1 (6CMe₃), 31.7 (10CMe₃). – ²⁹Si-NMR (C₆D₆): $\delta = 4.84$ (SitBu₂), 6.90 (SitBu₃). – IR (Film): 3270 cm⁻¹ (vNH). – Kristallstruktur: vgl. Lit.¹⁰.

 $\begin{array}{rrrr} C_{40}H_{92}N_2OSi_4 \ (729.5) & \mbox{Ber.} \ C \ 65.86 \ H \ 12.72 \ N \ 3.84 \\ & \mbox{Gef.} \ C \ 65.12 \ H \ 12.54 \ N \ 3.65 \end{array}$

(*Di-tert-butylmethoxysilyl*)(*tri-tert-butylsilyl*)*amin* (7c): Farblose Kristalle, Schmp. 140 °C, Sbl.-P. 125 °C/Hochvak. – ¹H-NMR (THF): $\delta = 1.13$ (s, SitBu₂), 1.18 (s, SitBu₃), verdeckt (OMe). – (C₆H₆): $\delta = 1.15$ (s, SitBu₂), 1.25 (s, SitBu₃), 3.48 (s, OMe). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 23.1$ (2CMe₃), 23.8 (3CMe₃), 29.8 (2CMe₃), 31.3 (3CMe₃), 59.6 (OMe). – ²⁹Si-NMR (C₆D₆): $\delta =$ – 6.27 (SitBu₂), 7.16 (SitBu₃). – IR (Film): 3320 cm⁻¹ (vNH).

C₂₁H₄₉NOSi₂ (387.8) Ber. C 65.04 H 12.74 N 3.61 Gef. C 63.65 H 11.85 N 3.57

(*Di-tert-butylchlorsilyl*)(*tri-tert-butylsilyl*)*amin* (7**d**): Farblose Kristalle, Schmp. 113 °C, Sbl.-P. 85 °C/Hochvak. – ¹H-NMR (CCl₄): $\delta = 1.14$ (s, SitBu₂), 1.17 (s, SitBu₃). – (THF): $\delta = 1.16$ (s, SitBu₂), 1.20 (s, SitBu₃). – (C₆H₆): $\delta = 1.16$ (s, SitBu₂), 1.20 (s, SitBu₃). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 23.6$ (2 CMe₃), 24.5 (3 CMe₃), 29.3 (3 CMe₃), 31.3 (2 CMe₃). – ²⁹Si-NMR (C₆D₆): $\delta = 8.43$ (SitBu₃), 16.0 (SitBu₂). – IR (Film): 3300 cm⁻¹ (vNH).

C₂₀H₄₆ClNSi (392.2) Ber. C 61.25 H 11.82 N 3.57 Gef. C 62.02 H 12.05 N 3.18

Reaktion von 3 mit Propen, Isobuten und Aceton: Man erwärmt ein evakuiertes, abgeschlossenes, mit flüssigem Stickstoff gekühltes Rohr, welches 0.123 g (0.35 mmol) 3 sowie 3.5 mmol Propen (A) oder 5.3 mmol Isobuten (B) enthält, auf Raumtemperatur (Reaktion bereits um -100° C) bzw. man gibt zu 0.106 g (0.298 mmol) 3 in 2 ml Benzol 0.596 mmol Isobuten (C) oder 0.1 ml (1.36 mmol) Aceton (D). Laut ¹H-NMR entsteht im Fall A 100% 6a, im Fall B 14% 6b und 86% 6c, im Fall C 100% 6c bzw. im Fall D 100% 8. Nach dem Abziehen aller i. Ölpumpenvak. flüchtigen Anteile verbleiben 6a bzw. 6b/6c bzw. 6c bzw. 8. Die Trennung von 6b/6c erfolgt nach Lösen des Gemischs in 1 ml *t*BuOMe durch präparative HPCL [Säule: ODS 21.2 × 250 nm; mobile Phase MeOH/ *t*BuOMe = 20:80. Fluß 20 ml/min, entsprechend 65 bar; Kapazitätsfaktoren x' = 2.00 (6b), 10.7 (6c).

Anmerkungen: 1) Die Umsetzungen von $3 \cdot$ THF mit Propen (20stdg. Erhitzen einer Lösung von 0.1 mmol 3 in 0.5 ml Benzol in Anwesenheit von 1 mmol Propen auf 60 °C) oder Aceton (0.1 mmol 3/1.4 mmol Aceton/2 ml Benzol, Raumtemp.) bzw. die Reaktion von $3 \cdot$ OCPh₂ mit Aceton (0.05 mmol 3/1.4 mmol Aceton/0.5 ml Benzol bei Raumtemp.) führen quantitativ zu 6a bzw. 8 neben THF bzw. Ph₂CO. – 2) 3 bzw. $3 \cdot$ THF setzen sich in Benzol mit 2,3-Dimethyl-1,3-butadien offensichtlich unter Bildung eines En-Reaktionsproduktes um (wurde nicht näher untersucht). [Di-tert-butyl(2-propenyl)silyl](tri-tert-butylsilyl)amin (6a): Farbloser Feststoff, Schmp. 121 °C. – ¹H-NMR (CCl₄): δ = 1.09 (s, SitBu₂), 1.16 (s, SitBu₃), 1.87/1.96 (m/m, SiCH₂), 4.93 (m, =CH₂), 5.94 (m, -CH=). – (C₆D₆): δ = 1.18 (s, 2SitBu₂), 1.19 (s, SitBu₃), 2.03/2.12 (m/m, SiCH₂), 5.13 (m, =CH₂), 6.07 (m, -CH=). – ¹³C-NMR (C₆D₆): δ = 22.9 (t, SiCH₂), 23.3 (s, 2CMe₃), 23.7 (s, 3CMe₃), 30.2 (q, 2CMe₃), 31.3 (q, 3CMe₃), 114.7 (t, =CH₂), 136.1 (d, -CH=). – IR (Film): 3310 cm⁻¹ (vNH).

```
\begin{array}{c} C_{23}H_{51}NSi_2 \ (397.8) \\ Gef. \ C \ 69.44 \\ H \ 12.92 \\ N \ 3.52 \\ Gef. \ C \ 68.22 \\ H \ 11.58 \\ N \ 3.24 \end{array}
```

2,2-Di-tert-butyl-4-methylen-1-(tri-tert-butylsilyl)-1-aza-2-silapentan (**6b**): Farbloser Feststoff, Schmp. 163 °C. – ¹H-NMR (CDCl₃): $\delta = 1.11$ (s, SitBu₂), 1.15 (s, SitBu₃), 1.86 (m, CH₃), 2.00 (m, SiCH₂), 4.70 (m, = CH₂). – (C₆D₆): $\delta = 1.21$ (s, SitBu₃), 1.22 (s, SitBu₂), 1.84 (m, CH₃), 2.15 (m, SiCH₂), 4.80 (m, = CH₂), 4.93 (m, = CH). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 23.4$ (2CMe₃), 23.8 (3CMe₃), 26.1 (CH₃), 26.6 (SiCH₂), 30.4 (2CMe₃), 31.3 (3CMe₃), 111.9 (= CH₂), 143.7 (=C \langle). – IR (Film): 3315 cm⁻¹ (vNH).

 $\begin{array}{rrrr} C_{24}H_{53}NSi_2 \ (411.9) & \mbox{Ber.} \ C \ 69.99 \ H \ 12.97 \ N \ 3.40 \\ & \mbox{Gef.} \ C \ 69.72 \ H \ 13.01 \ N \ 3.42 \end{array}$

2,2,6,6-Tetra-tert-butyl-4-methylen-1,7-bis(tri-tert-butylsilyl)-1,7diaza-2,6-disilaheptan (6c): Farbloser Feststoff, Schmp. 224 °C. – ¹H-NMR (CDCl₃): $\delta = 1.13$ (s, 2SitBu₂, 2SitBu₃), 2.05 (br., 2SiCH₂), 4.94 (br., = CH₂). – (C₆D₆): $\delta = 1.24$ (s, 2SitBu₃), 1.31 (s, 2SitBu₂), 2.31 (br., 2SiCH₂), 5.17 (br., = CH₂). – ¹³C{¹H}-NMR (C₆D₆): $\delta =$ 23.7 (2CMe₃), 23.9 (3CMe₃), 27.7 (2SiCH₂), 30.9 (2CMe₃), 31.4 (3CMe₃), 111.9 (=CH₂), 144.7 (=C \checkmark). – ²⁹Si-NMR (C₆D₆): $\delta =$ 4.41 (SitBu₂), 6.52 (SitBu₃). – IR (Film): 3310 cm⁻¹ (vNH). C₄₄H₉₈N₂Si₄ (767.6) Ber. C 68.85 H 12.87 N 3.65 Gef. C 67.99 H 12.56 N 3.81

[Di-tert-butyl(isopropenyloxy)silyl](tri-tert-butylsilyl)amin (8): Farbloser Feststoff, Schmp. 159°C. – ¹H-NMR (CCl₄): δ = 1.13 (s, SitBu₂), 1.16 (s, SitBu₃), 1.83 (m, CH₃), 4.06/4.21 (jeweils m, =CH₂). – (C₆D₆): δ = 1.22 (s, SitBu₂), 1.25 (s, SitBu₃), 1.78 (m, CH₃), 4.14/4.41 (jeweils m, =CH₂). – ¹³C-NMR (C₆D₆): δ = 23.4 (q, CH₃), 23.5 (s, 2CMe₃), 23.6 (s, 3CMe₃), 29.8 (q, 2CMe₃), 31.2 (q, 3CMe₃), 93.2 (t, =CH₂), 155.6 (s, =C[']_{3}). – ²⁹Si-NMR (C₆D₆): δ = -6.76 (SitBu₂), 7.53 (SitBu₃). – IR (Film): 3310 cm⁻¹ (vNH).

 $C_{23}H_{51}NOSi_2$ (413.8) Ber. C 67.75 H 12.42 N 3.39

Gef. C 67.05 H 12.46 N 3.40

Reaktion von 3 mit Methylvinylether: Man fügt zu 0.043 g (0.120 mmol) 3 in 0.5 ml Benzol 0.93 mmol Methylvinylether. Laut ¹H-NMR quantitative Bildung von 9, das nach Abkondensieren aller i. Ölpumpenvak. flüchtigen Anteile verbleibt.

Anmerkung: Die Umsetzung von $3 \cdot \text{THF}$ mit Methylvinylether in Benzol bei 60°C führt ebenfalls quantitativ zu 9 neben THF.

2.2-Di-tert-butyl-4-methoxy-1-(tri-tert-butylsilyl)-1-aza-2-silacyclobutan (9): Farbloser Feststoff, Schmp. 114°C (Zers.). – ¹H-NMR (CCl₄): $\delta = 1.13/1.14$ (jeweils s, SitBu₂), 1.16 (s, SitBu₃), verdeckt (SiCH₂), 3.07 (br., OMe), 4.93 (m, CH). – (C₆D₆): $\delta = 1.15/$ 1.21 (jeweils s, SitBu₂), 1.29 (s, SitBu₃), verdeckt (SiCH₂), 2.91 (br., OMe), 4.92 (m, CH). – ¹³C{¹H}-NMR (C₆D₆): $\delta = 17.2$ (SiCH₂), 24.0/24.9 (jeweils CMe₃), 24.2 (3CMe₃), 29.9/30.1 (jeweils CMe₃), 32.2 (3CMe₃), 51.1 (OMe), 90.5 (CH).

 $\begin{array}{c} C_{23}H_{51}NOSi_2 \ (413.8) \\ Gef. \ C \ 66.75 \ H \ 12.42 \ N \ 3.39 \\ Gef. \ C \ 66.04 \ H \ 11.54 \ N \ 3.31 \end{array}$

Reaktion von 3 mit Silylaziden

a) Zu 0.343 g (0.964 mmol) 3 in 10 ml Pentan werden 0.152 g (0.964 mmol) $tBuMe_2SiN_3$ gegeben. Laut ¹H-NMR quantitative Bildung von 11a. Aus der Reaktionslösung kristallisieren nach dem

Einengen auf 5 ml bei -78 °C 0.310 g (0.604 mmol, 63%) farbloses 5,5-Di-tert-butyl-1-(tert-butyldimethylsilyl)-4-(tri-tert-butylsilyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (11a), Schmp. 110°C. – ¹H-NMR (CDCl₃): $\delta = 0.333$ (s, SiMe₂), 0.979 (s, SitBu), 1.07 (s, SitBu₂), 1.20 (s, SitBu₃). - (C₆D₆): $\delta = 0.380$ (s, SiMe₂), 1.116 (s, SitBu), 1.123 (s, SitBu₂), 1.31 (s, SitBu₃). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆): $\delta =$ -0.97 (SiMe₂), 20.7 (CMe₃), 23.7 (2CMe₃), 25.0 (3CMe₃), 28.5 (CMe_3) , 30.2 $(2CMe_3)$, 31.8 $(3CMe_3)$. $-{}^{29}$ Si-NMR (C_6D_6) : $\delta = 11.7$ (SitBu₂), 11.8 (SiMe₂tBu), 15.2 (SitBu₃).

$C_{26}H_{60}N_4Si_3$	(513.1)	Ber.	C 60.87	H 11.79	N 10.92
		Gef.	C 61.05	H 11.67	N 10.95

b) Analog tBuMe₂SiN₃ (s. oben) reagiert tBu₂SiClN₃ mit 3 in Dibutylether zu einem [2+3]-Cycloaddukt 11b, welches sich nach Ersatz von Bu₂O durch Et₂O bei - 78°C auskristallisieren läßt. 5,5-Di-tert-butyl-1-(di-tert-butylchlorsilyl)-4-(tri-tert-butylsilyl)-1,2,3, 4-tetraaza-5-sila-2-cyclopenten (11b) ist noch nicht vollständig charakterisiert. - ¹H-NMR (C₆D₆): $\delta = 1.25$ (SitBu₂), 1.28 (SitBu₂, SitBu₃). – MS (70 eV; 100 °C): m/z u.a. 574 (M⁺), 276 $(tBu_2Si = NSiCltBu_2^+ - tBu)$, 184 $(tBu_3SiN_3^+ - tBu)$. 11b ist bei Raumtemp. in C_6D_6 instabil und zersetzt sich unter Eliminierung von *t*Bu₃SiN₃ [Nachweis durch Vergleich mit authentischer Probe; ¹H-NMR (C₆D₆): $\delta = 1.05$] in eine Verbindung, bei der es sich um das Silanimin $tBu_2Si = N - SiCltBu_2$ handeln könnte $[^{1}H-NMR$ $(C_6D_6): \delta = 1.20].$

c) tBu_3SiN_3 reagiert unter Normalbedingungen nicht mit 3^{17} .

Reaktion von 3 mit N2O: Man erwärmt ein mit flüssigem Stickstoff gekühltes, evakuiertes und abgeschlossenes NMR-Rohr, das 0.092 g (0.259 mmol) 3, 2.05 mmol N₂O sowie 0.7 ml C₆D₆ enthält, auf Raumtemperatur. Laut ¹H-NMR bilden sich hierbei 12 und tBu₃SiN₃ als Hauptprodukte (Molverhältnis 12: tBu₃SiN₃ ca. 0.8). Nach Abkondensieren aller flüchtigen Anteile trennt man den Rückstand nach Aufnahme in 0.5 ml tBuOMe durch präparative HPLC (Säule: ODS 21.2 × 250 mm; mobile Phase MeOH/ tBuOMe = 8:2; Fluß 20 ml/min, entsprechend 54 bar; Kapazitätsfaktor \varkappa' für 12 = 3.30). – Im Fall von 12 handelt es sich nach bisherigen Erkenntnissen um 2,2,4,4,7,7-Hexa-tert-butyl-5,5-dimethyl-1-oxa-3-aza-2,4,7-trisilacycloheptan. Farbloser Feststoff, Schmp. 175 °C. - ¹H-NMR (C₆D₆, 70 °C): $\delta = 1.20$ (s, SitBu₂), 1.21 (s, SitBu₂), 1.23 (s, SitBu₂), 1.37 (br., CMe₂), verdeckt (SiCH₂). - $(C_6D_5CD_3, 100 \,^\circ C)$: $\delta = 1.17$ (s, SitBu₂), 1.19 (s, SitBu₂), 1.20 (s, SitBu₂), 1.35 (br., CMe₂), verdeckt (SiCH₂). - ¹³C-NMR (C₆D₆): $\delta = 22.2$ (s, 2 CMe₃), 22.8 (s, 2 CMe₃), 24.4 (s, 2 CMe₃), 26.8 (s, CMe₂), 29.6 (t, CH₂), 29.9 (q, 2CMe₃), 30.7 (q, 2CMe₃), 31.7 (q, 2CMe₃), 34.5 (q, CMe_2). - ²⁹Si-NMR (C₆D₆): $\delta = -8.79$ (SitBu₂), 6.27 $(SitBu_2)$, 6.90 $(SitBu_2)$. – IR (Film): 3310 cm⁻¹ (vNH). – MS (70 eV): m/z (%) = 456 (M⁺ - tBu, 100), 414 (M⁺ - tBu - Propen, 4), 400 (M⁺ $- tBu - C_4H_8$, 19), 372 (M⁺ - tBu - 2 Propen, 8), 73 (SiMe $_3^+$, 5), 57 (tBu $^+$, 5).

C₂₈H₆₃NOSi₃ (514.1) Ber. C 65.42 H 12.35 N 2.72 Gef. C 65.46 H 12.42 N 2.74

Reaktion von $3 \cdot THF$ mit N_2O : Vgl. Lit.¹⁸).

Reaktion von 3 · THF mit NMe₂Et: Eine Lösung von 0.060 g (0.140 mmol) 3 · THF und 0.1 ml (0.93 mmol) NMe₂Et in 2 ml Benzol trübt sich bei Raumtemp. nach ca. 1 h, wobei sich 2 Phasen bilden. Nach Abkondensieren aller flüchtigen Anteile (Solvens, C₂H₄) i. Ölpumpenvak. verbleibt 2,2-Di-tert-butyl-7-(dimethylamino)-1-(tri-tert-butylsilyl)-3-oxa-1-aza-2-silaheptan (14) als farbloser Feststoff, Schmp. 152 °C. - ¹H-NMR (CDCl₃): $\delta = 1.07$ (s, SitBu₂), 1.12 (s, SitBu₃), 1.52 (m, CH₂CH₂), 2.18 (s + m, NMe₂ + CH₂N), 3.87 (m, OCH₂). - (C₆D₆): $\delta = 1.19$ (s, SitBu₂), 1.27 (s, SitBu₃), 1.55 (m, CH_2CH_2), 2.10 (s, NMe_2), 2.18 (m, CH_2N), 3.88 (m, OCH_2). -

¹³C-NMR (C₆D₆): $\delta = 23.1$ (s, 2 CMe₃), 23.7 (s, 3 CMe₃), 24.6/30.9/ 59.8/65.1 (jeweils t, OCH2CH2CH2CH2N), 29.9 (q, 2CMe3), 31.3 (q, $3CMe_3$, 45.6 (q, NMe₂). - ²⁹Si-NMR (C₆D₆): $\delta = -7.04$ (SitBu₂), 7.23 (SitBu₃). - IR (Film): 3320 cm⁻¹ (vNH).

C₂₆H₆₀N₂OSi₂ (473.0) Ber. C 66.03 H 12.79 N 5.92. Gef. C 64.64 H 11.59 N 6.18

Reaktion von 3 bzw. 3 · THF mit Butadien: 0.043 g (0.120 mmol) 3 bzw. 0.051 g (0.120 mmol) 3 · THF in 1 ml C₆D₆ werden zusammen mit 1.2 mmol 1,3-Butadien im evakuierten und abgeschlossenen NMR-Rohr auf 100°C erwärmt. Nach 15 h sind – laut ¹H-NMR - 3 bzw. 3 · THF vollständig verschwunden, und es haben sich in beiden Fällen zwei Hauptprodukte a und b (neben mehreren Nebenprodukten) im Molverhältnis ca. 3:1 gebildet [1H-NMR von $\mathbf{a}: \delta = 0.898, 1.12, 1.23$ (Flächenverhältnis 1:2:2); $\mathbf{b}: \delta = 0.95, 1.13, \mathbf{b}$ 1.22 (Flächenverhältnis 1:2:2)]. Die Produkte (Isomere?) konnten bisher nicht durch präparative HPLC getrennt werden. Laut Massenspektrum (70 eV) bestehen a und/oder b aus einem Molekül 3 sowie zwei Molekülen Butadien: $m/z = 406 (M^+ - tBu, 100\%)$.

CAS-Registry-Nummern

3: 99112-70-6 / 3 · THF: 105286-36-0 / 3 · OCPh₂: 111470-32-7 3 · NMe₂Et: 111470-33-8 / 4 (Li): 111470-18-9 / 4 · THF: 111470- $\begin{array}{c} 31-6 & / 6a: \ 99112-73-9 & / 6b: \ 111470-24-7 & / 6c: \ 111470-21-4 & / 7a: \\ 99112-71-7 & / 7b: \ 99112-72-8 & / 7c: \ 111470-23-6 & / 7d: \ 99112-69-3 & / \\ [D_6]-7e: \ 111470-22-5 & / 8: \ 111470-25-8 & / 9: \ 99112-74-0 & / \ 11a: \\ \end{array}$ 111470-26-9 / 11b: 111470-27-0 / 12: 111495-75-1 / 13: 111495-76-2 / 14: 111470-29-2 / $tBu_3SiBr: 56348-25-5$ / $tBu_3SiBa: 103349-$ 41-3 / $tBu_3SiBa: OBu_2: 111470-30-5$ / $tBu_3SiBa: 2$ THF: 111470-34-9 / tBu_2SiHCl : 56310-18-0 / tBu_2SiHN_3 : 111470-17-8 / tBu_2 -SiClN₃: 104957-97-3 / $tBu_2SiMeNLi(SitBu_3)$: 111470-19-0 / tBu_2 -SiMeNH(SitBu₃): 111470-20-3 / CF₃SO₃SiMe₃: 27607-77-8 / CF₃-SO₃Li: 33454-82-9 / tBuMe₂SiN₃: 58434-70-1 / tBu₂Si = NSiCltBu₂: 111470-28-1

- ¹⁾ 28. Mitteilung über ungesättigte Siliciumverbindungen; zugleich 80. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomologen. 27. (79.) Mitteilung: Lit.²⁾. ²⁾ N. Wiberg, K. Schurz, J. Organomet. Chem., ca. Febr. 1988.
- ³⁾ N. Wiberg, G. Wagner, Chem. Ber. 119 (1986) 1467.
- ⁴⁾ N. Wiberg, G. Preiner, O. Schieda, G. Fischer, *Chem. Ber.* **114** (1981) 3505.
- ⁵⁹ N. Wiberg, G. Preiner, Angew. Chem. **90** (1978) 393; Angew. Chem. Int. Ed. Engl. **17** (1978) 362.
- ⁶⁾ Vorläufige Mitteilung: N. Wiberg, K. Schurz, G. Fischer, Angew. Chem. 97 (1985) 1058; Angew. Chem. Int. Ed. Engl. 24 (1985) 1053. Ein weiteres bei Raumtemperatur metastabiles, röntgenstrukturanalytisch noch nicht charakterisiertes Silanimin, $iPr_2Si = NR'$ (R = Supermesityl), wurde inzwischen von M. Hesse und U. Klingebiel (Angew. Chem. 98 (1986) 638; Angew. Chem. Int. Ed. Engl. 25 (1986) 649) bekannt gemacht.
- ⁷⁾ Vorläufige Mitteilung: N. Wiberg, K. Schurz, G. Reber, G. Müller, J. Chem. Soc., Chem. Commun. 1986, 591
- ⁸⁾ N. Wiberg, J. Organomet. Chem. 273 (1984) 141
- ⁹⁾ N. Wiberg, G. Fischer, P. Karampatses, Angew. Chem. 96 (1984) 58; Angew. Chem. Int. Ed. Engl. 23 (1984) 59.
- ¹⁰⁾ N. Wiberg, E. Kühnel, K. Schurz, H. Borrmann, A. Simon, Veröffentlichung in Vorbereitung.
- ¹¹⁾ Die beiden, zur Gewinnung von 3 · THF notwendigen Reak-tionsschritte [Synthese von 3, Gl. (1), sowie Reaktion von 3 mit THF, Gl. (2)] werden mit Vorteil dadurch miteinander verknüpft, daß THF-haltiges Silylnatrium mit tBu2SiClN3 in Pentan umgesetzt wird: $tBu_3SiNa(THF)_2 + tBu_2SiClN_3 \rightarrow 3 \cdot THF +$ N₂ + NaCl + THF. ¹²⁾ N. Wiberg, H. Köpf, J. Organomet. Chem. **315** (1986) 9.
- ¹³⁾ Bei höheren Reaktionstemperaturen setzt sich das durch Metallierung von tBu2SiCl-NĤ(SitBu3) mit MeLi erhältliche Amid 4 – wohl auf dem Wege über 3 [vgl. Gl. (1)] – teilweise weiter mit MeLi unter Bildung von tBu₂SiMe-NLi(SitBu₃) um.
- ¹⁴⁾ N. Wiberg, G. Wagner, G. Müller, J. Riede, J. Organomet. Chem. 271 (1984) 381.

- ¹⁵⁾ VB-Beschreibungsweise. Der Bindungszustand läßt sich im Sinne der MO-Beschreibungsweise auch über eine Wechselbeziehung des mit einem freien Elektronenpaar besetzten Donororbitals (HOMO) mit dem leeren π^* -Orbital des Silanimins (LU-MO) verstehen.
- ¹⁶⁾ Me₃SiX (X z. B. Cl, OMe) bildet unter Normalbedingungen mit 3 kein Insertionsprodukt in die SiX-Bindung.
- ¹⁷⁾ Daß tBu₃SiN₃ unter Normalbedingungen kein [2 + 3]-Cycload-dukt mit 3 bildet, folgt aus Reaktionen von 3 mit N₂O [vgl. Gl. (5), (6) sowie Versuchsteil], bei denen tBu₃SiN₃ in Anwesenheit von 3 entsteht.

- ¹⁸⁾ N. Wiberg, G. Preiner, K. Schurz, G. Fischer bzw. N. Wiberg, G. Preiner, K. Schurz, *Chem. Ber.* **121** (1988): 29. bzw. 30. Mit-teilung über ungesättigte Siliciumverbindungen, in Vorbereitung.
 ¹⁹⁾ Bezüglich der Öffnung des Rings von koordinativ gebundenem THF in 3 · THF vgl. Lit.¹⁸⁾.
 ²⁰⁾ G. Raabe, J. Michl, *Chem. Rev.* **85** (1985) 419.
 ²¹⁾ M. Weidenbruch, H. Pesel, W. Peter, R. Streichen, J. Organomet. *Chem.* **9** (1977) 141; M. P. Doyle, C. T. West, J. Am. Chem. Soc. **97** (1975) 3777. 97 (1975) 3777.
- ²²⁾ D. R. Parker, L. H. Sommer, J. Am. Chem. Soc. 98 (1976) 618.

[260/87]